Schopnost efektivně se pohybovat v daném prostředí byla pro člověka a jeho předchůdce klíčová k zajištění dostatku energie k přežití a rozmnožování. Potřeba překonávat vzdálenosti s co nejmenšími náklady formovala stavbu našich končetin již od doby, kdy jsme se poprvé postavili na dvě končetiny. S příchodem rodu Homo dochází ke změnám dolní končetiny a celého těla umožňujícím efektivnější běh, jenž byl v té době nejlepším způsobem, jak se dostat k masu. Neandrtálce stála chůze a běh více energie než moderní lidi, nicméně rozdíly byly malé a zřejmě nepřispěly k vyhynutí neandrtálců.

Použitá a citovaná literatura:
Bramble D. M., Lieberman D. E. 2004. Endurance running and the evolution of Homo. Nature 432: 345–352.
Carrier D. R., Kapoor A. K. , Kimura T., Nickels M. K., Satwanti, Scott E. C., So J. K., Trinkaus E. 1984. The Energetic Paradox of Human Running and Hominid Evolution [and Comments and Reply]. Curr Anthropol 25: 483–495.
Hora M., Sládek V. 2014. Influence of lower limb configuration on walking cost in Late Pleistocene humans. J Hum Evol 67: 19–32.
Nakatsukasa M., Hirasaki E., Ogihara N. 2006. Energy expenditure of bipedal walking is higher than that of quadrupedal walking in Japanese macaques. Am J Phys Anthropol 131: 33–37.
Pontzer H., Raichlen D. A., Sockol M. D. 2009. The metabolic cost of walking in humans, chimpanzees, and early hominins. J Hum Evol 56: 43–54.
Pontzer H., Raichlen D. A., Rodman P. S. 2014. Bipedal and quadrupedal locomotion in chimpanzees. J Hum Evol 66: 64–82.
Raichlen D. A., Armstrong H., Lieberman D. E. 2011. Calcaneus length determines running economy: Implications for endurance running performance in modern humans and Neandertals. J Hum Evol 60: 299–308.
Rodman P. S., McHenry H. M. 1980. Bioenergetics and the origin of hominid bipedalism. Am J Phys Anthropol 52: 103–106.
Rubenson J., Heliams D. B., Maloney S. K., Withers P. C., Lloyd D. G., Fournier P. A. 2007. Reappraisal of the comparative cost of human locomotion using gait-specific allometric analyses. J Exp Biol 210: 3513–3524.
Scholz M. N., Bobbert M. F., van Soest A. J., Clark J. R., van Heerden J. 2008. Running biomechanics: shorter heels, better economy. J Exp Biol 211: 3266–3271.
Sockol M. D., Raichlen D. A., Pontzer H. 2007. Chimpanzee locomotor energetics and the origin of human bipedalism. Proc Natl Acad Sci 104: 12265–12269.
Steudel-Numbers K. L., Tilkens M. J. 2004. The effect of lower limb length on the energetic cost of locomotion: implications for fossil hominins. J Hum Evol 47: 95–109.
Taylor C. R., Heglund N. C., Maloiy G. M. 1982. Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals. J Exp Biol 97: 1–21.
Weaver T. D., Steudel-Numbers K. 2005. Does climate or mobility explain the differences in body proportions between neandertals and their upper paleolithic successors? Evol Anthropol 14: 218–223.

The ability to move effectively through a given environment was crucial for hu­mans and their ancestors to acquire enough energy for survival and reproduction. The need to cover distances with minimum costs has formed our limbs since we first stood on two limbs. With the early representatives of the genus Homo, the lower limbs and the whole body changed to allow more effective running, which was the best way to obtain meat in those ti­mes. H. neanderthalensis had higher costs of walking and running than modern humans, but the differences were subtle and did not contribute to the downfall of H. neanderthalensis.