Biologická rozmanitost není rovnoměrně rozložená na zemském povrchu. Obecně platí, že klesá od rovníku k pólům (latitudinální gradient biodiverzity) a většina druhů žije v tropech a zvláště v tropických horách. Existuje obrovské množství teorií a hypotéz, proč žije většina druhů v tropech a proč jsou různá místa různě biologicky rozmanitá. Hledání příčin rozdílů v biodiverzitě na povrchu Země je strhující vědeckou anabází, která vyústila v poměrně robustní porozumění základním mechanismům, které určují biologickou rozmanitost v čase a prostoru.

Citovaná a použitá literatura:

ALLEN, Andrew P., et al. Kinetic effects of temperature on rates of genetic divergence and speciation. Proceedings of the National Academy of Sciences, 2006, 103.24: 9130-9135.
ALROY, John. Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology, 2010, 53.6: 1211-1235.
BROWN, James H., et al. Toward a metabolic theory of ecology. Ecology, 2004, 85.7: 1771-1789.
COLWELL, Robert K.; HURTT, George C. Nonbiological gradients in species richness and a spurious Rapoport effect. The American Naturalist, 1994, 144.4: 570-595.
CURRIE, David J. Energy and large-scale patterns of animal-and plant-species richness. The American Naturalist, 1991, 137.1: 27-49.
CURRIE, David J., et al. Predictions and tests of climate‐based hypotheses of broad‐scale variation in taxonomic richness. Ecology letters, 2004, 7.12: 1121-1134.
DAVIES, T. Jonathan; BUCKLEY, Lauren B. Exploring the phylogenetic history of mammal species richness. Global Ecology and Biogeography, 2012, 21.11: 1096-1105.
GRAHAM, Catherine H.; STORCH, David; MACHAC, Antonin. Phylogenetic scale in ecology and evolution. Global ecology and biogeography, 2018, 27.2: 175-187.
JETZ, Walter, et al. Global distribution and conservation of evolutionary distinctness in birds. Current biology, 2014, 24.9: 919-930.
MACHAC, Antonin; GRAHAM, Catherine H.; STORCH, David. Ecological controls of mammalian diversification vary with phylogenetic scale. Global ecology and biogeography, 2018, 27.1: 32-46.
PONTARP, Mikael, et al. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends in ecology & evolution, 2019, 34: 211-223.
ROSENZWEIG, Michael L., et al. Species diversity in space and time. Cambridge University Press, 1995.
SANDEL, B., et al. The influence of Late Quaternary climate-change velocity on species endemism. Science, 2011, 334.6056: 660-664.
STORCH, David, et al. Energy, range dynamics and global species richness patterns: reconciling mid‐domain effects and environmental determinants of avian diversity. Ecology Letters, 2006, 9.12: 1308-1320.
STORCH, David; BOHDALKOVÁ, Eliška; OKIE, Jordan. The more‐individuals hypothesis revisited: the role of community abundance in species richness regulation and the productivity–diversity relationship. Ecology letters, 2018, 21.6: 920-937.
STORCH, David; OKIE, Jordan. The carrying capacity for species richness. Global Ecology and Biogeography, 2019, in press.
WIENS, John J.; DONOGHUE, Michael J. Historical biogeography, ecology and species richness. Trends in ecology & evolution, 2004, 19.12: 639-644.
Wiens J. J. & Donoghue M. J. (2004). Historical biogeography, ecology and species richness. Trends in ecology & evolution, 19: 639–644

Biodiversity is not evenly distributed on the Earth's surface. Generally it declines from the equator to the poles (latitudinal gradient of biodiversity) and most species live in the tropics and especially in the tropical mountains. There is a huge number of theories and hypotheses why most species live in the tropics and why different places are differently species-rich. Searching for the causes of differences in biodiversity on the Earth's surface is a stunning scientific quest that has resulted in a relatively robust understanding of the underlying mechanisms that determine biodiversity in time and space.